Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Different Ways of Hydrogen Bonding in Water - Why Does Warm Water Freeze Faster than Cold Water?

Identifieur interne : 000E26 ( Main/Exploration ); précédent : 000E25; suivant : 000E27

Different Ways of Hydrogen Bonding in Water - Why Does Warm Water Freeze Faster than Cold Water?

Auteurs : Yunwen Tao [États-Unis] ; Wenli Zou [États-Unis] ; Junteng Jia [République populaire de Chine] ; Wei Li [République populaire de Chine] ; Dieter Cremer [États-Unis]

Source :

RBID : pubmed:27996255

Abstract

The properties of liquid water are intimately related to the H-bond network among the individual water molecules. Utilizing vibrational spectroscopy and modeling water with DFT-optimized water clusters (6-mers and 50-mers), 16 out of a possible 36 different types of H-bonds are identified and ordered according to their intrinsic strength. The strongest H-bonds are obtained as a result of a concerted push-pull effect of four peripheral water molecules, which polarize the electron density in a way that supports charge transfer and partial covalent character of the targeted H-bond. For water molecules with tetra- and pentacoordinated O atoms, H-bonding is often associated with a geometrically unfavorable positioning of the acceptor lone pair and donor σ*(OH) orbitals so that electrostatic rather than covalent interactions increasingly dominate H-bonding. There is a striking linear dependence between the intrinsic strength of H-bonding as measured by the local H-bond stretching force constant and the delocalization energy associated with charge transfer. Molecular dynamics simulations for 1000-mers reveal that with increasing temperature weak, preferentially electrostatic H-bonds are broken, whereas the number of strong H-bonds increases. An explanation for the question why warm water freezes faster than cold water is given on a molecular basis.

DOI: 10.1021/acs.jctc.6b00735
PubMed: 27996255


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Different Ways of Hydrogen Bonding in Water - Why Does Warm Water Freeze Faster than Cold Water?</title>
<author>
<name sortKey="Tao, Yunwen" sort="Tao, Yunwen" uniqKey="Tao Y" first="Yunwen" last="Tao">Yunwen Tao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University , 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University , 3215 Daniel Avenue, Dallas, Texas 75275-0314</wicri:regionArea>
<wicri:noRegion>Texas 75275-0314</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zou, Wenli" sort="Zou, Wenli" uniqKey="Zou W" first="Wenli" last="Zou">Wenli Zou</name>
<affiliation wicri:level="1">
<nlm:affiliation>Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University , 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University , 3215 Daniel Avenue, Dallas, Texas 75275-0314</wicri:regionArea>
<wicri:noRegion>Texas 75275-0314</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jia, Junteng" sort="Jia, Junteng" uniqKey="Jia J" first="Junteng" last="Jia">Junteng Jia</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, P. R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023</wicri:regionArea>
<wicri:noRegion>Nanjing 210023</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Wei" sort="Li, Wei" uniqKey="Li W" first="Wei" last="Li">Wei Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, P. R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023</wicri:regionArea>
<wicri:noRegion>Nanjing 210023</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cremer, Dieter" sort="Cremer, Dieter" uniqKey="Cremer D" first="Dieter" last="Cremer">Dieter Cremer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University , 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University , 3215 Daniel Avenue, Dallas, Texas 75275-0314</wicri:regionArea>
<wicri:noRegion>Texas 75275-0314</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:27996255</idno>
<idno type="pmid">27996255</idno>
<idno type="doi">10.1021/acs.jctc.6b00735</idno>
<idno type="wicri:Area/PubMed/Corpus">000E45</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000E45</idno>
<idno type="wicri:Area/PubMed/Curation">000E45</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000E45</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000D40</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000D40</idno>
<idno type="wicri:Area/Ncbi/Merge">001889</idno>
<idno type="wicri:Area/Ncbi/Curation">001889</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">001889</idno>
<idno type="wicri:Area/Main/Merge">000E29</idno>
<idno type="wicri:Area/Main/Curation">000E26</idno>
<idno type="wicri:Area/Main/Exploration">000E26</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Different Ways of Hydrogen Bonding in Water - Why Does Warm Water Freeze Faster than Cold Water?</title>
<author>
<name sortKey="Tao, Yunwen" sort="Tao, Yunwen" uniqKey="Tao Y" first="Yunwen" last="Tao">Yunwen Tao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University , 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University , 3215 Daniel Avenue, Dallas, Texas 75275-0314</wicri:regionArea>
<wicri:noRegion>Texas 75275-0314</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zou, Wenli" sort="Zou, Wenli" uniqKey="Zou W" first="Wenli" last="Zou">Wenli Zou</name>
<affiliation wicri:level="1">
<nlm:affiliation>Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University , 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University , 3215 Daniel Avenue, Dallas, Texas 75275-0314</wicri:regionArea>
<wicri:noRegion>Texas 75275-0314</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jia, Junteng" sort="Jia, Junteng" uniqKey="Jia J" first="Junteng" last="Jia">Junteng Jia</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, P. R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023</wicri:regionArea>
<wicri:noRegion>Nanjing 210023</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Wei" sort="Li, Wei" uniqKey="Li W" first="Wei" last="Li">Wei Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023, P. R. China.</nlm:affiliation>
<country xml:lang="fr" wicri:curation="lc">République populaire de Chine</country>
<wicri:regionArea>Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210023</wicri:regionArea>
<wicri:noRegion>Nanjing 210023</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cremer, Dieter" sort="Cremer, Dieter" uniqKey="Cremer D" first="Dieter" last="Cremer">Dieter Cremer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University , 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University , 3215 Daniel Avenue, Dallas, Texas 75275-0314</wicri:regionArea>
<wicri:noRegion>Texas 75275-0314</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of chemical theory and computation</title>
<idno type="eISSN">1549-9626</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The properties of liquid water are intimately related to the H-bond network among the individual water molecules. Utilizing vibrational spectroscopy and modeling water with DFT-optimized water clusters (6-mers and 50-mers), 16 out of a possible 36 different types of H-bonds are identified and ordered according to their intrinsic strength. The strongest H-bonds are obtained as a result of a concerted push-pull effect of four peripheral water molecules, which polarize the electron density in a way that supports charge transfer and partial covalent character of the targeted H-bond. For water molecules with tetra- and pentacoordinated O atoms, H-bonding is often associated with a geometrically unfavorable positioning of the acceptor lone pair and donor σ
<sup>*</sup>
(OH) orbitals so that electrostatic rather than covalent interactions increasingly dominate H-bonding. There is a striking linear dependence between the intrinsic strength of H-bonding as measured by the local H-bond stretching force constant and the delocalization energy associated with charge transfer. Molecular dynamics simulations for 1000-mers reveal that with increasing temperature weak, preferentially electrostatic H-bonds are broken, whereas the number of strong H-bonds increases. An explanation for the question why warm water freezes faster than cold water is given on a molecular basis.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Tao, Yunwen" sort="Tao, Yunwen" uniqKey="Tao Y" first="Yunwen" last="Tao">Yunwen Tao</name>
</noRegion>
<name sortKey="Cremer, Dieter" sort="Cremer, Dieter" uniqKey="Cremer D" first="Dieter" last="Cremer">Dieter Cremer</name>
<name sortKey="Zou, Wenli" sort="Zou, Wenli" uniqKey="Zou W" first="Wenli" last="Zou">Wenli Zou</name>
</country>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Jia, Junteng" sort="Jia, Junteng" uniqKey="Jia J" first="Junteng" last="Jia">Junteng Jia</name>
</noRegion>
<name sortKey="Li, Wei" sort="Li, Wei" uniqKey="Li W" first="Wei" last="Li">Wei Li</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E26 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000E26 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27996255
   |texte=   Different Ways of Hydrogen Bonding in Water - Why Does Warm Water Freeze Faster than Cold Water?
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27996255" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021